Vai indietro   Scuola forum (scuo.la) - Forum di discussione per le scuole > Materie di Scuola > Matematica



Top 5 Stats
Latest Posts
Discussione    data, Ora  invio  Risposte  Visite   Forum
Vecchio Cosa comporta l'operazione alle emorroidi con suturatrice?  28-02, 19:29  Sigismondo  1  18457   Medicina
Vecchio Come collegare il cavo dalle elettrovalvole al termostato?  27-02, 16:26  Marsilio  1  19793   Idraulica
Vecchio Dove trovare un vaso con scarico dritto per eliminare tubo a S?  26-02, 16:16  karol  1  23931   Idraulica
Vecchio Le valvole antireflusso evitano reflusso proveniente dal WC?  26-02, 09:16  Marsilio  1  18676   Idraulica
Vecchio Il welfare puo contribuire all'evoluzione del liberalismo?  25-02, 20:00  insu  1  21480   Economia
Vecchio Cosa indica la variazione di energia libera in un processo?  25-02, 19:02  Abramo  1  15767   Chimica
Vecchio La richiesta del recupero retroattivo ore perse è normata?  24-02, 19:01  Luigia  1  397   Scuola in generale
Vecchio In cosa consiste la costante di velocità di reazione chimica?  24-02, 12:13  manuel  1  15323   Chimica
Vecchio Quali passaggi fare per risolvere il caso "Datafile Spa"?  24-02, 09:05  Adam  1  21697   Economia
Vecchio Cos'è quel "Santa" nella canzone "I ga el suv" di DJ Ice?  22-02, 16:32  roberto  1  13364   Film, Libri, Musica

Rispondi
 
LinkBack Strumenti della discussione Modalità di visualizzazione
  #1 (permalink)  
Vecchio 06-03-2013, 06:03 PM
Member
 
Registrato dal: Jul 2012
Messaggi: 48
predefinito Come determinare dimensione e base di U, V e intersezione?

Come determinare dimensione e base di U, V e intersezione?


In M2(R) si considerino i sottospazi vettoriali
U=(x1 x2) appartenete ad M2(R) / x1+x3=0]
(x3 x4)
V=(x1 x2) appartenete ad M2(R) / x1-x3=x2=0]
(x3 x4)
Determinare
(a)la dimensione e una base di U e V
(b) la dimensione e una base di U + V
(c) la dimensione e una base di U intersezione V
Rispondi quotando
  #2 (permalink)  
Vecchio 07-13-2023, 09:19 AM
Junior Member
 
Registrato dal: Sep 2007
Messaggi: 14
predefinito

(a) Per determinare la dimensione e una base di U, dobbiamo trovare il numero massimo di vettori linearmente indipendenti in U.

Per U, abbiamo la condizione che x1 + x3 = 0. Possiamo scrivere questa equazione come x1 = -x3. Quindi, il vettore U può essere scritto come:

U = (x1, x2)
(x3, x4)

Sostituendo x1 = -x3, otteniamo:

U = (-x3, x2)
(x3, x4)

Ora possiamo esprimere U come combinazione lineare di due vettori:

U = x2 * (0, 1) + x3 * (-1, 0) + x4 * (0, 0)

Da questa rappresentazione, vediamo che il vettore (0, 0) non contribuisce a creare nuovi vettori linearmente indipendenti. Quindi, una base per U è data dai vettori (0, 1) e (-1, 0).

La dimensione di U è 2 e una possibile base è {(0, 1), (-1, 0)}.

Per V, abbiamo le condizioni x1 - x3 = x2 = 0. Possiamo scrivere V come:

V = (x1, x2)
(x3, x4)

Sostituendo x1 = x3 e x2 = 0, otteniamo:

V = (x3, 0)
(x3, x4)

Possiamo esprimere V come combinazione lineare di due vettori:

V = x3 * (1, 0) + x4 * (0, 1)

Dalla rappresentazione sopra, vediamo che il vettore (1, 0) e il vettore (0, 1) sono linearmente indipendenti. Quindi, una base per V è data dai vettori (1, 0) e (0, 1).

La dimensione di V è 2 e una possibile base è {(1, 0), (0, 1)}.

(b) Per determinare la dimensione e una base di U + V, dobbiamo trovare il numero massimo di vettori linearmente indipendenti nella somma dei due sottospazi.

Poiché U e V sono sottospazi vettoriali, la loro somma U + V sarà ancora un sottospazio vettoriale.

Poiché U e V hanno una dimensione di 2 ciascuno e non sono paralleli, la loro somma U + V avrà una dimensione massima di 2.

Per trovare una base per U + V, possiamo combinare le basi di U e V. Una possibile base per U + V è quindi {(0, 1), (-1, 0), (1, 0), (0, 1)}.

La dimensione di U + V è 2 e una possibile base è {(0, 1), (-1, 0), (1, 0), (0, 1)}.

(c) Per determinare la dimensione e una base di U ∩ V, dobbiamo trovare il numero massimo di vettori linearmente indipendenti che appartengono sia a U che a V.

Per U ∩ V, dobbiamo trovare i vettori (x1, x2) tali che soddisfino entrambe le condizioni x1 + x3 = 0 e x1 - x3 = x2 = 0.

Dalla prima condizione, otteniamo x1 = -x3, e dalla seconda condizione, otteniamo x2 = x3 = 0.

Quindi, i vettori in U ∩ V saranno della forma:

(x1, x2) = (-x3, 0)

Possiamo vedere che in U ∩ V, x2 deve essere uguale a 0 e quindi, x1 deve essere uguale a 0. Pertanto, il vettore (0, 0) è l'unico vettore che appartiene sia a U che a V.

La dimensione di U ∩ V è 0 e una possibile base è {(0, 0)}.




Rispondi quotando
Rispondi

Strumenti della discussione
Modalità di visualizzazione

Regole d'invio
Non puoi inserire discussioni
Non puoi inserire repliche
Non puoi inserire allegati
Non puoi modificare i tuoi messaggi

BB code è attivo
Le smilie sono attive
Il codice IMG è attivo
il codice HTML è disattivato
Trackbacks are attivo
Pingbacks are attivo
Refbacks are attivo


Discussioni simili
Discussione Ha iniziato questa discussione Forum Risposte Ultimo messaggio
Come calcolare quantità di sale HEDP sodico (NaHEDP) che si forma mistral78 Chimica 2 01-09-2024 05:45 PM
Come risolvere esercizio di chimica sull'abbondanza isotopica? Chiara256 Chimica 1 06-12-2023 06:41 PM
Come calcolare pOH e pH delle soluzioni di CH3COOH e CH3COONa? rebe Chimica 1 05-22-2023 05:40 PM
Calcolare solubilità del AgCl in soluzione AgNO3 nota la costante ariekazy Chimica 1 03-03-2023 08:53 AM
I risvolti psicologici del non amare di essere contraddetti gio_46 Psicologia 1 12-16-2017 07:21 AM


Tutti gli orari sono GMT +2. Attualmente sono le 10:01 PM.


© Copyright 2008-2022 powered by sitiweb.re - P.IVA 02309010359 - Privacy policy - Cookie policy e impostazioni cookie